Stellarator Reactors

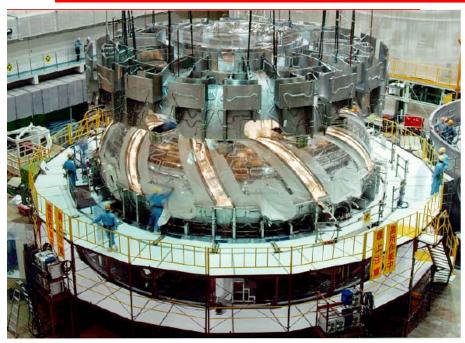
M.C. Zarnstorff,

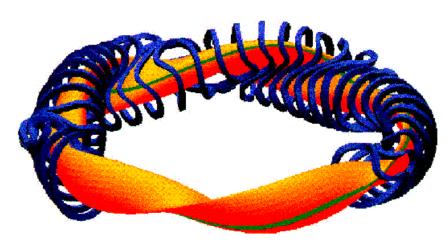
Princeton Plasma Physics Laboratory

With material from Aries-CS, NCSX, QPS, LHD/CHS, and W7X Teams

PPPL Grad. Seminar 11 April 2005

MCZ 050411 1

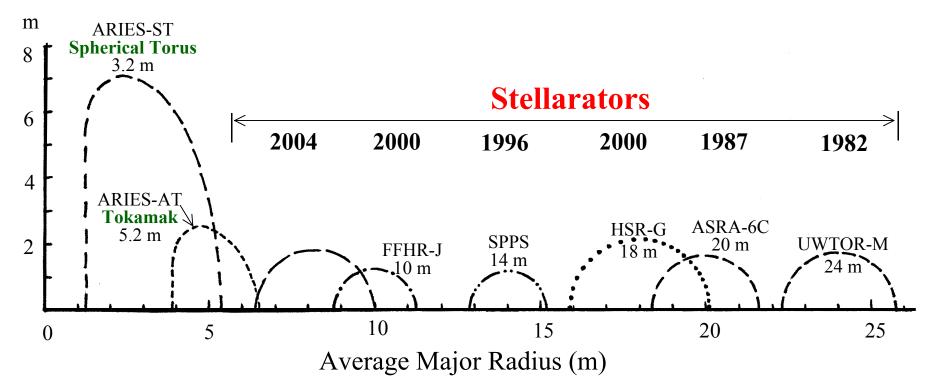

Outline


- Motivation
- Physics Issues
- Engineering Issues
- Aries-CS & earlier studies
- Summary

Motivation: Key advantages

- Stellarators: toroidal magnetic configurations, fully 3D shape
- Most of the rotational transform (iota = 1/q) due to 3D shape, not plasma current
- \rightarrow Can control rotational transform & shear from external coils
- → No need for current drive to sustain configuration. Naturally compatible with steady state.
- Stellarators are typically disruption free Equilibrium is not lost due to changes in pressure or current.
- Can use 3D plasma shaping to control physics properties (~ 40 shape parameters instead of ~4 for axisymmetric)
 → More flexibility in configuration design

The World Stellarator Program is Substantial

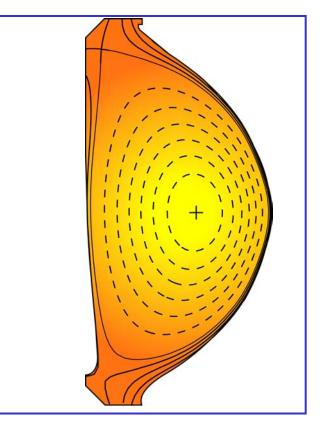

Large Helical Device (Japan) Enhanced confinement, high β ; A = 6-7, R=3.9 m, B=3 \rightarrow 4T Wendelstein 7-X (Germany) (2010) non-symmetric optimized design: no current, A = 11, R=5.4 m, B=3T

- New large international experiments use superconducting coils for steady-state
- · Medium-scale experiments (W7-AS, CHS), and
- Exploratory helical-axis experiments in Australia Japan, Spain, US.

Large aspect ratios; physics-optimized designs without symmetry, no current.

MCZ 050411 4

Stellarator Attractions Have Motivated A Succession of Reactor Studies

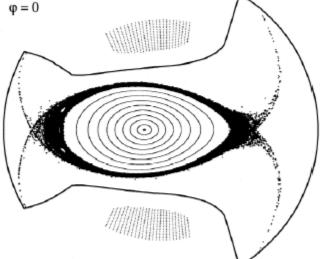


- Typically much larger R than tokamak designs
 => Motivated development of more compact designs
- SPPS projected cost of electricity similar to tokamaks, but higher initial capital cost
- Stellarator reactors expected to operate in true ignition.
- MCZ 050411 5 No need for current drive or profile control.

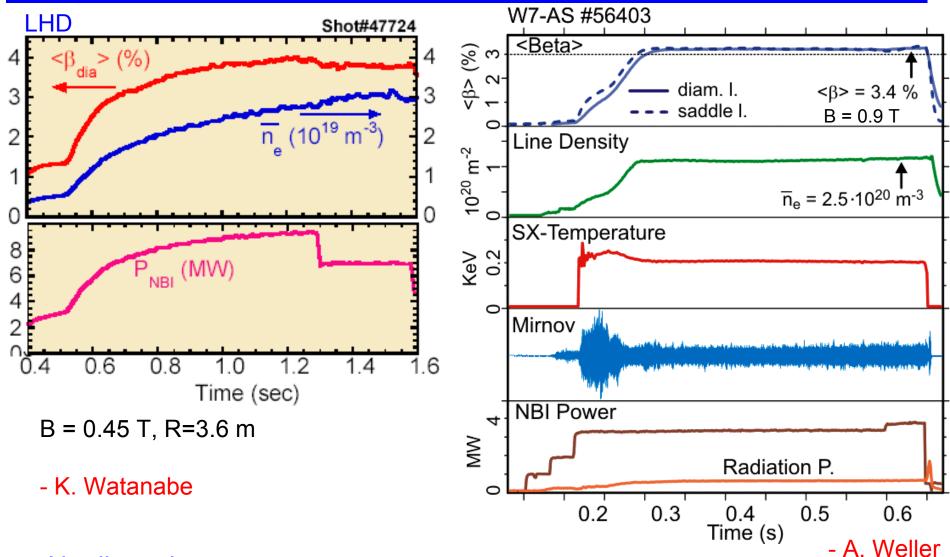
Fusion Plasma Challenges for Reactors

e.g. NAS Burning Plasma Report

- Macroscopic Stability
 - Maximize plasma pressure
 - No disruptions
- Transport & Microturbulence
 - Adequate energy confinement
 - 3D: suppression of ripple-transport
- Wave-particle Interactions
 - Successful alpha heating
 - 3D: alpha orbit confinement
- Plasma-material Interactions
 - First wall survivability, exhaust
- Configuration Sustainment

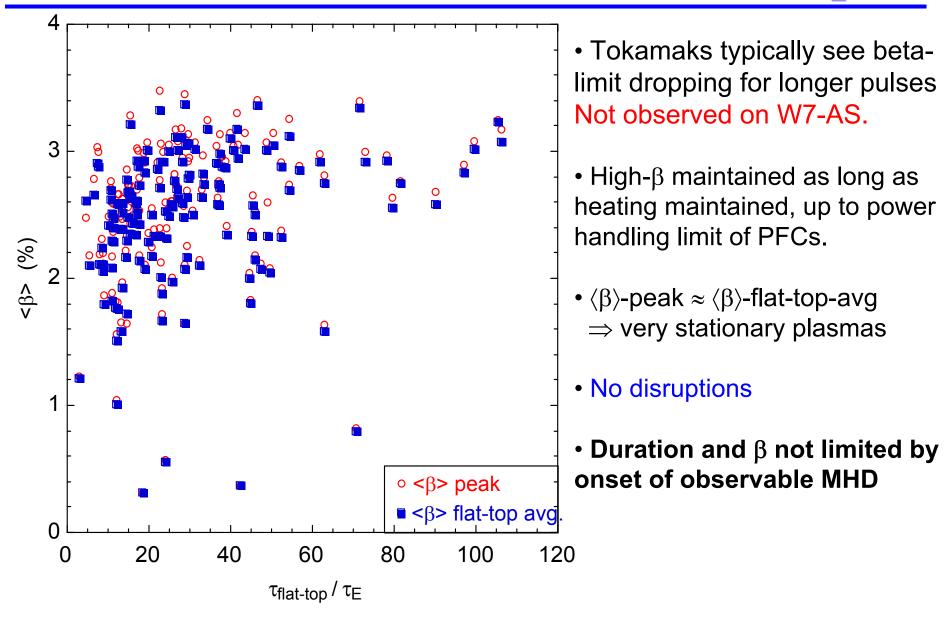

LHD: largest stellarator, record parameters

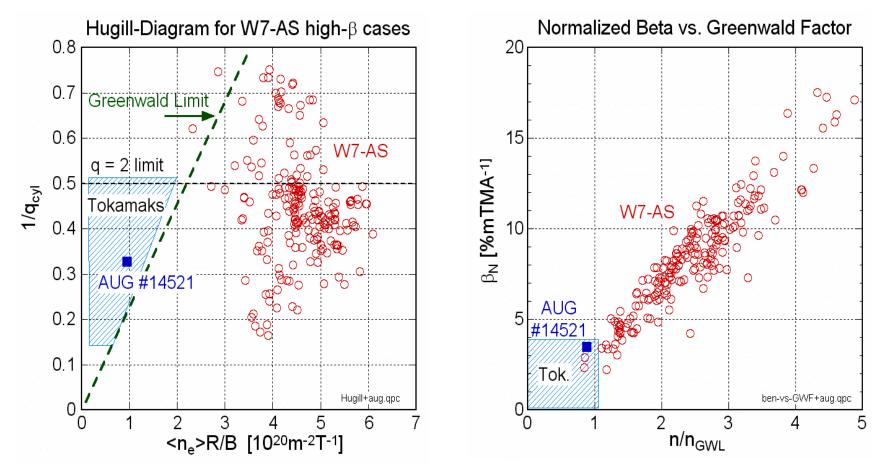
• R = 3.6 – 3.9 m


- minor radius <a> = 0.6m
- $B \le 3T$
- 12 MW NBI, 3MW ICH, 2MW ECH
- T_e, T_i up to 10 keV
- < β > up to 4%, β (0) up to 6%
- pulse lengths up to 756 s
- $\tau_{\rm E}$ up to 0.36 s

Worlds largest superconducting coil system

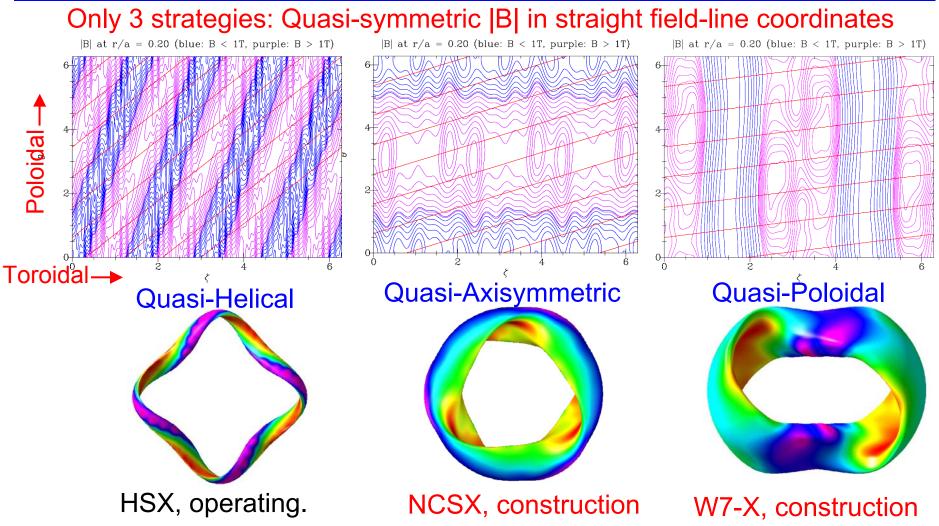
- 1 GJ of magnetic energy
- 850 ton cold mass at 4K


LHD & Wendelstein 7-AS: Quiescent high-β


- No disruptions
- In both experiments, β is not limited by observed MHD instabilities

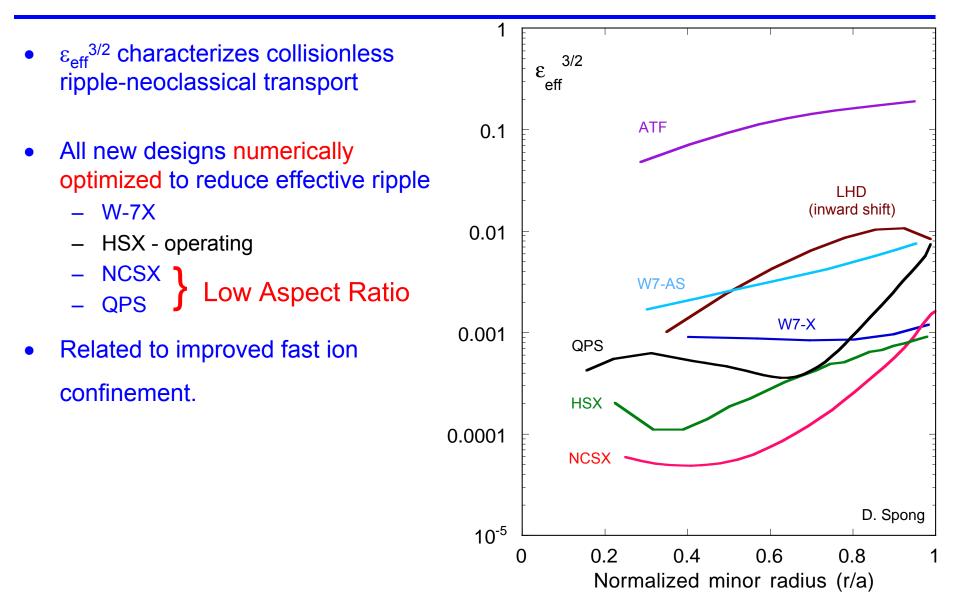
- In both experiments, predicted linear instability threshold is at much lower $\beta_{MCZ\,050411\,8}$

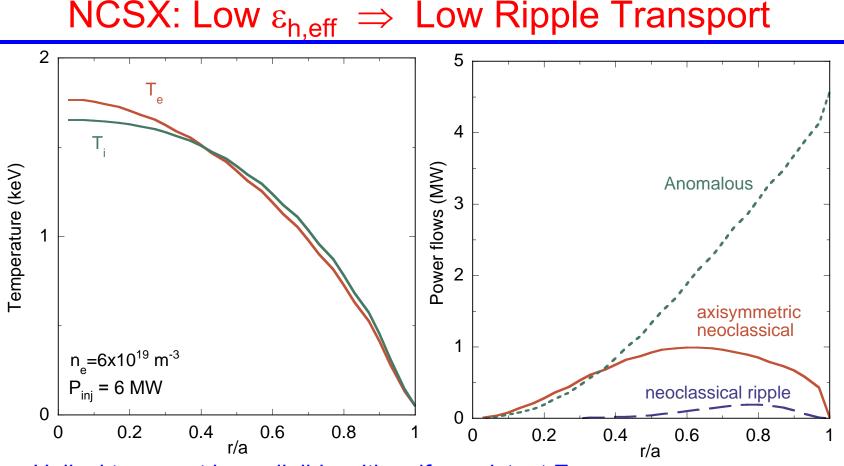
W7AS: $\langle \beta \rangle$ > 3.2% maintained for > 100 τ_{E}



W7-AS Operating Range much larger than Tokamaks

- Using equivalent toroidal current that produces same edge iota
- Limits are not due to MHD instabilities
- high- β is reached with high density (favourable density scaling in W7-AS)
- All W7-AS high-β data points beyond operational limits of tokamaks

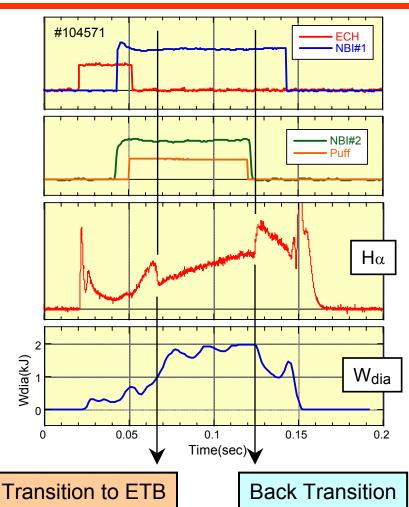

New designs: Optimize for orbit Confinement



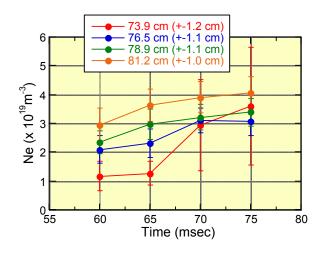
QPS, Proposed

- Reduces ripple-driven cross field transport
- Reduces flow damping in quasi-symmetry direction

New Experiments: Low Ripple Transport


- Helical transport is negligible with self-consistent E_r
- Quasi-axisymmetric

Collisional-orbit transport is the same as equivalent tokamak


Calculated: low toroidal flow damping.
 Flow stabilization of turbulence should be similar to tokamaks

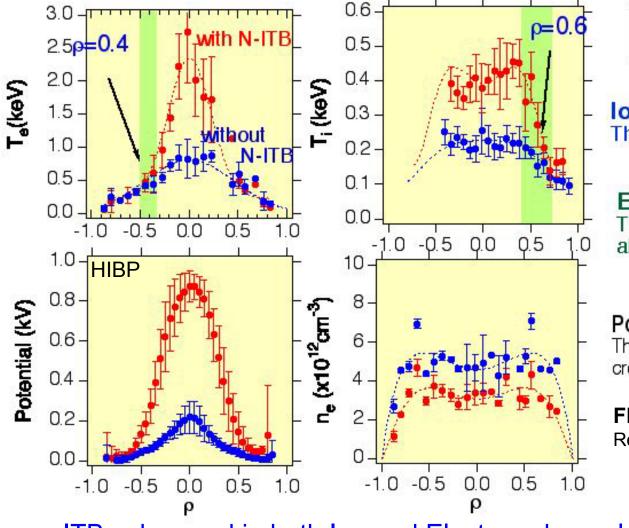
Stellarator H-modes and Edge Barriers similar to tokamaks

Thomson measurement shows edge density increases at transition

Two NBIs, B = 0.95 T R_{ax} = 92.1 cm

- S. Okamura

CHS


- Drop in Ha, broadening of density & pressure, increase in confinement
- Also observed on W7-AS, LHD, Heliotron-J
- Any ELM-like events appear small

MCZ 050411 14

Combined ITBs also Observed

NBI+ECH with N-ITB
 NBI+ECH without N-ITB

lon : The steep gradient increases in the range of ρ ~0.4–0.7

Electron :

The electron temperature gradient also increases inside $\rho \sim 0.4$.

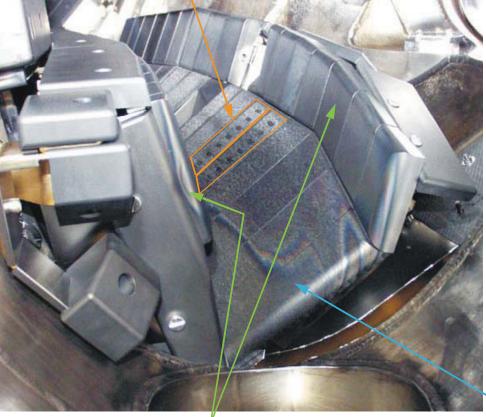
Potential :

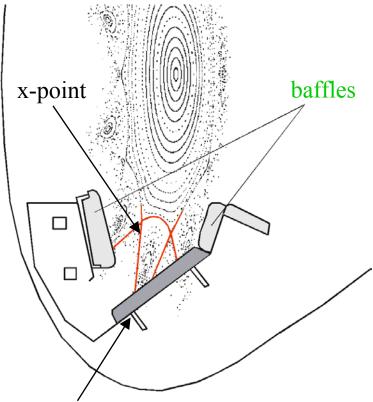
The electron root is found inside ρ -0.6 creating the large E_r shear regime.

Fluctuations:

Reduced when ITB present.

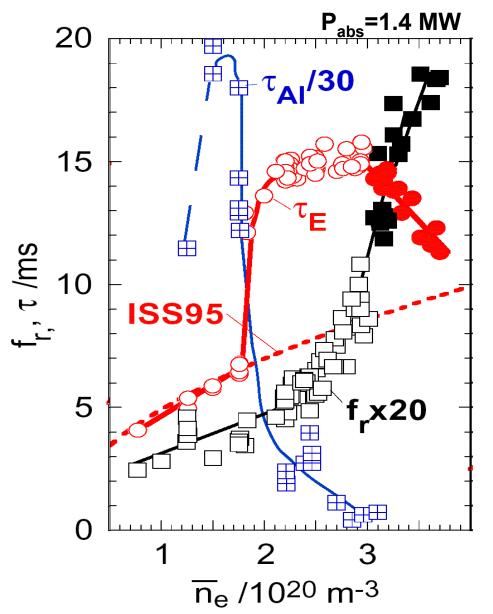
- S. Okamura


• ITBs observed in both Ion and Electron channels


• Electron-root adds additional mechanism for ITB formation, observed MCZ 050411 15 also on LHD, W7AS

W7AS: First Test of Island Divertor Properties

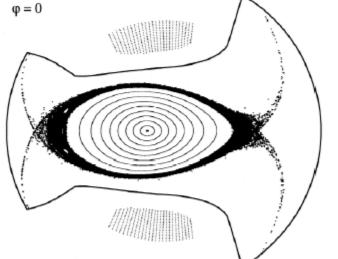
probe arrays



baffles

target plates

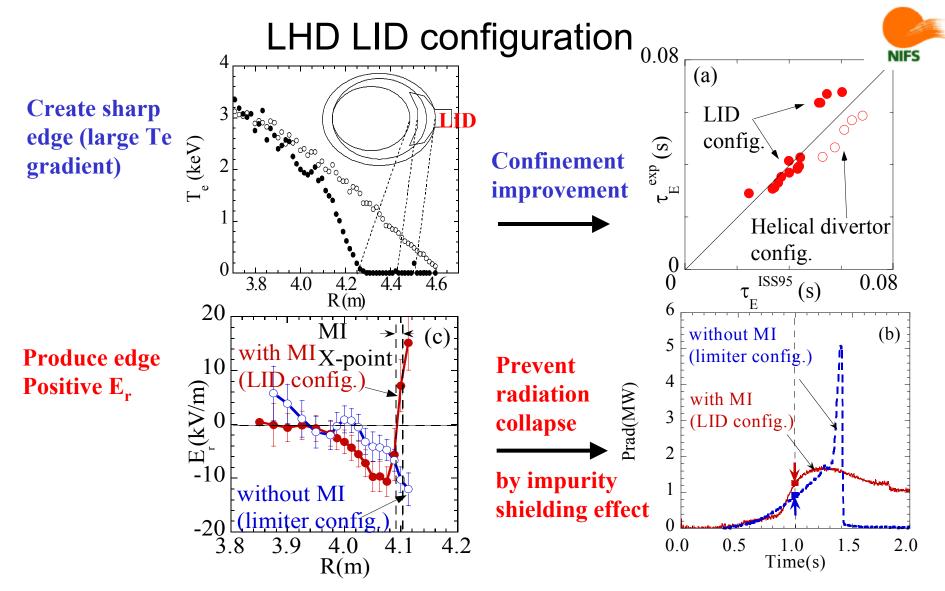
- Natural magnetic islands at the plasma boundary: used to divert magnetic field lines
- Island divertor opened access to long pulse operation at high power, high n_e
- Divertor configurations also being studied on LHD


Only observed with divertor edge

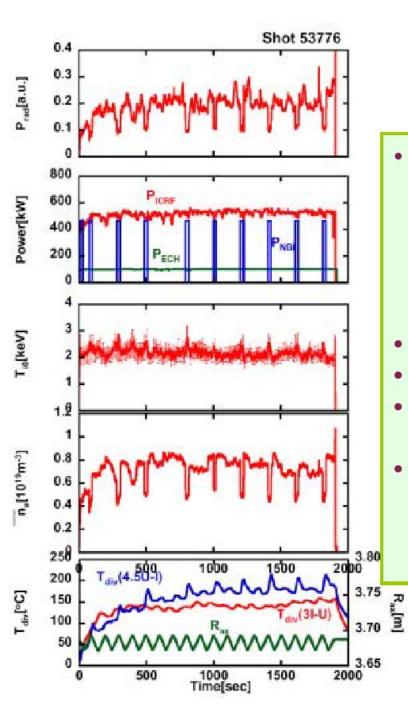
Above threshold density:

- τ_E jumps to 2 x τ_E (ISS95)
- τ_{imp} suddenly drops by factor 20-30 to τ_{imp} ~ τ_E
- Radiated power fraction stable, up to 90 % during detachment
- HDH robust against configuration changes...
- Used for high- β studies

LHD: Helical divertor



• R = 3.6 – 3.9 m

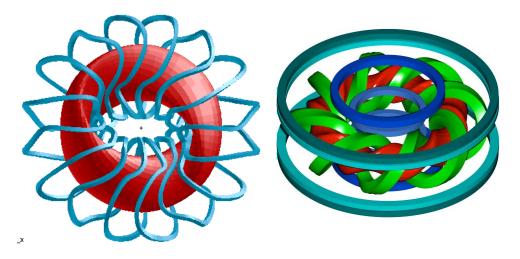

- minor radius <a> = 0.6m
- $B \le 3T$
- 12 MW NBI, 3MW ICH, 2MW ECH
- Intrinsic helical divertor from coil structure
- Can also introduce 'local island divertor' and scoop-like divertor structure

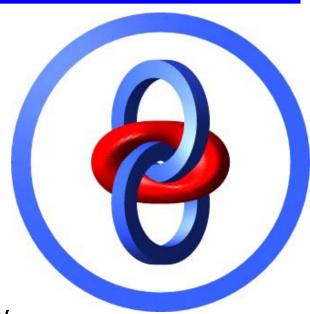
Basic function of LID demonstrated
1) confinement improvement
2) prevent radiation collapse

MCZ 050411 19

Motojima, IAEA 2004

Successful 31 min. long discharge

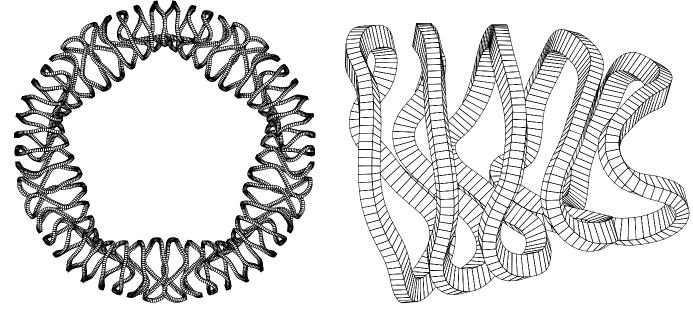

 Combination of three heating schemes Average power is 680kW Steady state injection of ICRF(520 KW) and ECH(100 kW) 25s pulse of NBI at intervals : 60 kW (averaged for one duty cycle) 2.0keV Ion temperature Electron temperature 1.3-1.7keV Line averaged electron density 7-8×10¹⁸ m⁻³ Density drops during NBI pulses Sweep of magnetic axis (one round of 3cm for 3min. 18 rounds between R_{ax}= 3.67-3.7m) ➔ maintain the temperature of divertor plates close to antenna at moderate level.


(B = 2.75T at R=3.6m, #53776, Helium)

Biggest Engineering Issues: Coils

•Stellarators can be made with very simple coils – simpler than any tokamak (e.g. CNT)

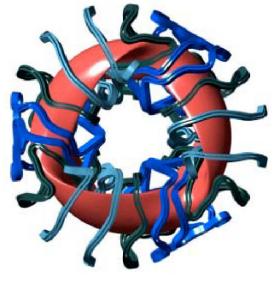
- Infinite range of coil topologies for making any particular stellarator plasma
 - helical coils
 - modular coils
 - saddle coils
- When optimize plasma shape for transport, stability,... coil shapes become more complex
 - curvature
 - coil-plasma separation
 - coil-coil separation
 - B on coil vs B in plasma
- Modular coils can be used alone
 no need for PF or TF



Earlier Reactor Designs were Very Large Motivated US Compact Stellarator Program

HSR (W7X-like)

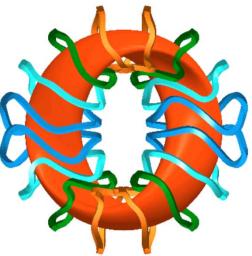
R = 22m! R/<a> = 11 50 coils


ITER fits inside

Kisslinger, IAEA 1998

- Large aspect ratio eases maintenance and access Reduces wall loading => longer blanket and shield life
- Very high initial capital cost
- Probably would work!

Aries-CS: Examining Compact Alternatives


NCSX

MHH2

port or sector (end)

access

access through ports

both quasi-axisymmetric

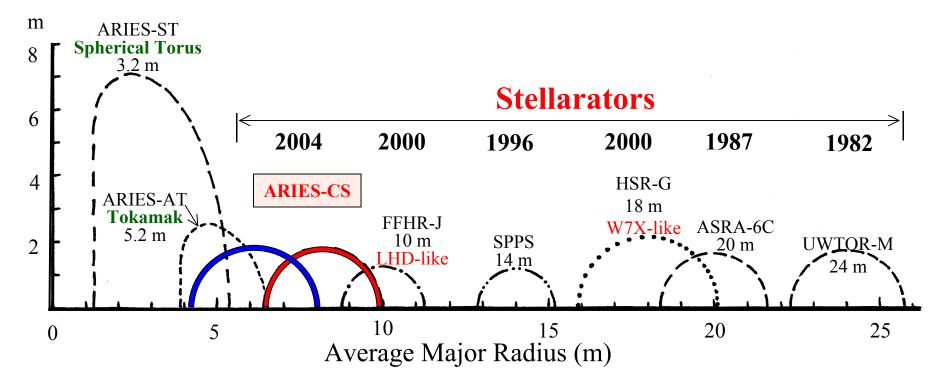
Key Configuration Properties	NCSX-1	NCSX-2	MHH2-8	MHH2-16
Plasma aspect ratio A _p = < <i>R</i> >/< <i>a</i> >	4.50	4.50	2.70	3.75
Wall (plasma) surface area/< <i>R</i> > ²	11.80	11.95	19.01	13.37
Min. plasma-coil separation ratio $< R > \Delta_{min}$	5.90	6.88	4.91	5.52
Min. coil-coil separation ratio < <i>R</i> >/(c-c) _{min}	10.07	9.38	7.63	13.27
Total coil length/ <r></r>	89.7	88.3	44.1	64.6
<i>B</i> _{max,coil} /< <i>B</i> _{axis} > for 0.4-m x 0.4-m coil pack	2.10	1.84	3.88	2.77

0-D Determination of Main Reactor Parameters

- Fix maximum neutron wall loading p_{n,wall} at 5 MW/m²
 peaking factor =1.5 -> <p_{n,wall}> = 3.3 MW/m²
- Maximize $\langle p_{wall} \rangle$ subject to $j_{SC}(B_{max})$ and radial build constraints
 - blanket, shield, structure, vacuum vessel ~ wall area ~ $1/< p_{n.wall}$ >
 - volume of coils ~ L_{coil}/j_{coil} ~ <*R*>^{1.2} ~ 1/< $p_{n,wall}$ >^{0.6}
 - blanket replacement independent of <p_{n,wall}>
- $\langle p_{wall} \rangle = 3.3 \text{ MW/m}^2 \longrightarrow \text{ wall area} = 480 \text{ m}^2 \text{ for } P_{fusion} = 2 \text{ GW}$ $\langle R \rangle = 6.22 \text{ m for NCSX-1 vs. } \langle R \rangle = 14 \text{ m for SPPS}$
- Chose < > = 6%: no reliable instability limit, high equilibrium limit
 <B_{axis}> = 5.80 T for NCSX-1
- B_{max} on coil depends on plasma-coil spacing & coil cross section
- <*R*> and <*B*_{axis}> for the other cases are limited by the radial build and coil constraints to < $p_{n,wall}$ > = 2.13–2.67 MW/m²

0-D Study Gives Main Reactor Parameters

	NCSX-1	NCSX-2	MHH2-8	MHH2-16
$< p_{n,wall} > (MW/m^2)$	3.33	2.67	2.13	2.4
< <i>R</i> > (m)	6.22	6.93	6.19	6.93
< <i>a</i> > (m)	1.38	1.54	2.29	1.85
< <i>B</i> _{axis} > (T)	6.48	5.98	5.04	5.46
B _{max} (T)	12.65	10.9	14.9	15.2
j _{coil} (MA/m²)	114	119	93	93
k _{max}	3.30	5.0	2.78	1.87
coil width (m)	0.598	0.719	0.791	0.502
coil depth (m)	0.181	0.144	0.286	0.268
radial gap (m)	0.026	0.012	0.007	0.005
Coil volume (m ³)	60.3	63.4	61.4	60.3
Wall area (m ²)	480	600	750	667


- Successful in reducing reactor size (*<R*>) by factor ~ 2!
- Wall (blanket, shield, structure, vacuum vessel) area smallest for NCSX-1 ==> choose for more detailed study

1-D Power Balance Gives Plasma Parameters

	NCSX-1	NCSX-2	MHH2-8	MHH2-16
<i><r< i="">> (m)</r<></i>	6.22	6.93	6.19	6.93
<i><a< i="">> (m)</a<></i>	1.38	1.54	2.29	1.85
< <i>B</i> _{axis} > (T)	6.48	5.98	5.04	5.46
H-ISS95	4.15	4.20	3.75	4.10
<i>n</i> (10 ²⁰ m ⁻³)	3.51	2.89	2.05	2.43
f _{DT}	0.841	0.837	0.837	0.839
f _{He}	0.049	0.051	0.051	0.050
T (keV)	9.52	9.89	9.92	9.74
, (%)	6.09	6.12	6.13	6.09

- ISS-95 confinement improvement factor of 3.75 to 4.2 is required; present stellarator experiments have up to 2.5
- ISS-2004 scaling indicates _{eff}^{-0.4} improvement, so compact stellarators with very low _{eff} should have high H-ISS values

Optimized Engineering and Physics Design Leads to Compactness of ARIES-CS

Major radius more than halved by advanced physics and technology, dropping from 24 m for UWTOR-M to 6-8 m for ARIES-CS and approaching R of advanced tokamaks.

Summary

- Stellarator characteristics solve current major challenges of MFE
 - ✓ Steady state at high-beta without need for current drive
 - ✓ No disruptions => eases PFC choices
 - ✓ High density => easier plasma solutions for divertor
 - \checkmark No need for feedback to control instabilities
 - ✓ Projects to ignition
- Quasi-symmetry offers solutions to confinement
 - Quasi-axisymmetry should connect to tokamak confinement experience
- Compact designs developed. Project to competitive size reactors.
- Scaling of confinement to reactor regime is uncertain.
- New experiments arriving, optimized for orbit confinement, β , A
 - First results from HSX: Quasi-symmetry matters! Flow damping reduced.
 - W7-X and NCSX under construction. Optimized for β and confinement.
 - QPS: proposed for construction. Quasi-poloidal at low aspect ratio.